Oral brooding (Anasterias antarctica) versus internal brooding (Diplopteraster verrucosus): Contrasting strategies of the brooded juveniles for full development

Autores/as

  • Cintia Pamela Fraysse Centro Austral de investigaciones Científicas- Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET)
  • Analía Fernanda Pérez Universidad Maimonides Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Ayelén Mattenet Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Malena Pfoh Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Claudia Clementina Boy Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Palabras clave:

Embryos, Sea stars, Oxidative Metabolism, Energy Density

Resumen

Both sea star species in this study are brooders from the South Atlantic. Anasterias antarctica displays a complex reproductive cycle involving incubation during eight or nine months and it broods its offspring over the mouth, while Diplopteraster verrucosus displays continuous reproduction and broods its offspring in nidamental chambers under the dermis. We collected A. antarctica in May, August, and November (beginning, mid and late incubation) from Parque Nacional Tierra del Fuego (Tierra del Fuego AeIAS, Argentina), while D. verrucosus was collected at three Oceanographic Research Cruises at Namuncurá Marine Protected Area/ Burdwood Bank I and II. We measured general parameters of oxidative metabolism (reactive oxygen species “ROS” and total antioxidant capacity “TAC”), energy density, and energy content in three different stages during offspring development. In the case of A. antarctica, energy depletion, increasing ROS and constant TAC levels at the late development stage could act as a developmental constraint and trigger the independence of juveniles. Similarly, in D. verrucosus juveniles, which exhibit extra embryonic maternal nutrition, despite the continued increase in energy, the antioxidants present in this kind of nutrition do not counteract the ROS generated by the metabolic rise.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Cintia Pamela Fraysse, Centro Austral de investigaciones Científicas- Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET)
    Laboratorio de Ecología, Fisiología, y Evolución de Organismos Acuáticos
  • Analía Fernanda Pérez, Universidad Maimonides Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
    Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA)
  • Ayelén Mattenet, Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

    Laboratorio de Ecología, Fisiología, y Evolución de Organismos Acuáticos

    Laboratorio de Crustáceos y Ecosistemas Costeros

  • Malena Pfoh, Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
    Laboratorio de Crustáceos y Ecosistemas Costeros
  • Claudia Clementina Boy, Centro Austral de Investigaciones Científicas (CADIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

    Laboratorio de Ecología, Fisiología, y Evolución de Organismos Acuáticos

     

Referencias

Adami, M. L., & Gordillo, S. (1999). Structure and dynamics of the biota associated with Macrocystis pyrifera (Phaeophyta) from the Beagle Channel, Tierra del Fuego. Scientia Marina, 63(1), 183-191. https://doi.org/10.3989/scimar.1999.63s1183

Amado, L. L., Garcia, M. L., Ramos, P. B., Freitas, R. F., Zafalon, B., Ferreira, J. L. R., Yunes, J. S., & Monserrat, J. M. (2009). A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Science of The Total Environment, 407(6), 2115-2123. https://doi.org/10.1016/j.scitotenv.2008.11.038

Bernasconi, I. (1964). Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol Inst Biol Mar Mar del Plata.

Bosch, I. (1989). Contrasting modes of reproduction in two Antarctic asteroids of the genus Porania with a description of unusual feeding and non-feeding larval types. The Biological Bulletin, 177(1), 77-82. https://doi.org/10.2307/1541836

Bosch, I., & Pearse, J. S. (1990). Developmental types of shallow-water asteroids of McMurdo Sound, Antarctica. Marine Biology, 104(1), 41-46. https://doi.org/10.1007/BF01313155

Bosch, I., & Slattery, M. (1999). Costs of extended brood protection in the Antarctic sea star, Neosmilaster georgianus (Echinodermata: Asteroidea). Marine Biology, 134(3), 449-459. https://doi.org/10.1007/s002270050561

Boy, C. C., Pérez, A. F., Fernández, D. A., Calvo, J., & Morriconi, E. R. (2009). Energy allocation in relation to spawning and overwintering of a diadromous Puyen (Galaxias maculatus) population in the southernmost limit of the species distribution. Polar Biology, 32(1), 9-14. https://doi.org/10.1007/s00300-008-0495-z

Byrne, M. (1996). Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae). Marine Biology, 125, 551-567. https://doi.org/10.1007/BF00353268

Chia, F.-S. (1974). Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia jugoslavica, 10, 121-130.

Clark, A. M., & Downey, M. E. (1992). Starfishes of the Atlantic. Chapman & Hall.

Everingham, J. W. (1961). The intra-ovarian embryology of Leptosynapta clarki [M Sc Thesis]. University of Washington, Seatle.

Fisher, W. K. (1940). Asteroidea. Discovery Reports, 20, 69-306.

Fraysse, C., Calcagno, J., & Pérez, A. F. (2018). Asteroidea of the southern tip of South America, including Namuncurá Marine Protected Area at Burdwood Bank and Tierra del Fuego Province, Argentina. Polar Biology, 41, 2423-2433. https://doi.org/10.1007/s00300-018-2377-3

Fraysse, C. P., Boy, C. C., Becker, Y. A., Calcagno, J. A., & Pérez, A. F. (2020). Brooding in the Southern Ocean: The Case of the Pterasterid Sea Star Diplopteraster verrucosus (Sladen, 1882). The Biological Bulletin, 1-12. https://doi.org/10.1086/709664

Fraysse, C. P., Boy, C. C., & Pérez, A. F. (2021). Reproductive traits of the intertidal sea star Anasterias antarctica (Echinodermata: Asteroidea) from the Beagle Channel, Argentina. Marine Biology, 168(12), 178. https://doi.org/10.1007/s00227-021-03987-9

Fraysse, C. P., Pérez, A. F., Calcagno, J., & Boy, C. C. (2020). Energetics and development modes of Asteroidea (Echinodermata) from the Southwestern Atlantic Ocean, including Burdwood Bank/MPA Namuncurá. Polar Biology, 12. https://doi.org/10.1007/s00300-020-02621-6

Gil, D. G., Escudero, G., & Zaixso, H. E. (2011). Brooding and development of Anasterias minuta (Asteroidea: Forcipulata) in Patagonia, Argentina. Marine Biology, 158(11), 2589-2602.

https://doi.org/10.1007/s00227-011-1760-1

Gil, D. G., & Zaixso, H. E. (2008). Feeding ecology of the subantarctic sea star Anasterias minuta within tide pools in Patagonia, Argentina. Revista de Biología Tropical, 56, 311-328.

Gillespie, J. M., & McClintock, J. B. (2007). Brooding in echinoderms: How can modern experimental techniques add to our historical perspective? Journal of Experimental Marine Biology and Ecology, 342, 191-201. https://doi.org/10.1016/j.jembe.2006.10.055

Hansen, T. A. (1983). Modes of larval development and rates of speciation in early tertiary Neogastropods. Science, 220(4596), 501-502. https://doi.org/10.1126/science.220.4596.501

Jablonski, D. (1986). Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science, 39, 565-587.

Jablonski, D., & Lutz, R. A. (1983). Larval ecology of marine benthic invertebrates: Paleobiological implications. Biological Reviews, 58(1), 21-89. https://doi.org/10.1111/j.1469-185X.1983.tb00380.x

Khan, M. S. R., Whittington, C. M., Thompson, M. B., & Byrne, M. (2019a). Arrangement and size variation of intra-gonadal offspring in a viviparous asterinid sea star. Zoosymposia, 15(1), 71-82. https://doi.org/10.11646/zoosymposia.15.1.8

Khan, M. S. R., Whittington, C. M., Thompson, M. B., & Byrne, M. (2019b). Intragonadal incubation of progeny in three viviparous asterinid sea stars that differ in offspring provisioning, lecithotrophy vs matrotrophy. Marine Biology, 166(6), 81. https://doi.org/10.1007/s00227-019-3507-3

Lawrence, J. M., & McClintock, J. B. (1994). Energy acquisition and allocation by echinoderms (Echinodermata) in polar seas: Adaptations for success. En B. F. Keegan & D. S. O’Connor (Eds.), Echinodermata (pp. 39-52).

Lieberkind, I. (1926). Ctenodiscus australis Lütken. A brood-protecting asteroid. Vid. Dansk. Nat. Hist. Foren, 82, 184-196.

Liversage, K., & Byrne, M. (2018). A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara). Research Ideas and Outcomes, 4, e29766. https://doi.org/10.3897/rio.4.e29766

Lucas, A. (1996). Energetics of aquatic animals. Taylor & Francis.

Mah, C. L. (2023). World Asteroidea Database. Anasterias antarctica (Lütken, 1857). World Register of Marine Species.

https://www.marinespecies.org/aphia.php?p=taxdetails&id=378829 on 2021-09-16

Marshall, D. J., & Morgan, S. G. (2011). Ecological and evolutionary consequences of linked life-history stages in the sea. Current Biology, 21(18), R718-R725. https://doi.org/10.1016/j.cub.2011.08.022

McClary, D. J., & Mladenov, P. V. (1990). Brooding biology of the sea star Pteraster militaris (O.F. Müller): Energetic and histological evidence for nutrient translocation to brooded juveniles. Journal of Experimental Marine Biology and Ecology, 142(3), 183-199. https://doi.org/10.1016/0022-0981(90)90090-Y

McClintock, J. B., & Pearse, J. S. (1986). Organic and energetic content of eggs and juveniles of antarctic echinoids and asterids with lecithotrophic development. Comparative Biochemistry and Physiology Part A: Physiology, 85(2), 341-345. https://doi.org/10.1016/0300-9629(86)90259-8

McEdward, L. R. (1992). Morphology and development of a unique type of pelagic larva in the starfish Pteraster tesselatus (Echinodermata: Asteroidea). The Biological Bulletin, 182(2), 177-187. https://doi.org/10.2307/1542111

McEdward, L. R., & Janies, D. A. (1993). Life cycle evolution in Asteroids: What is a Larva? The Biological Bulletin, 184(3), 255-268. https://doi.org/10.2307/1542444

McEdward, L. R., & Miner, B. G. (2001). Larval and life-cycle patterns in echinoderms. Canadian Journal of Zoology, 79(7), 1125-1170. https://doi.org/10.1139/z00-218

Mileikovsky, S. A. (1971). Types of larval development in marine bottom invertebrates, their distribution and ecological significance: A re-evaluation. Marine Biology, 10(3), 193-213. https://doi.org/10.1007/BF00352809

Ostrovsky, A. N., Lidgard, S., Gordon, D. P., Schwaha, T., Genikhovich, G., & Ereskovsky, A. V. (2016). Matrotrophy and placentation in invertebrates: A new paradigm. Biological Reviews, 91(3), 673-711. https://doi.org/10.1111/brv.12189

Pérez, A. F., Boy, C. C., Calcagno, J., & Malanga, G. (2015). Reproduction and oxidative metabolism in the brooding sea star Anasterias antarctica (Lütken, 1957). Journal of Experimental Marine Biology and Ecology, 463, 150-157. https://doi.org/10.1016/j.jembe.2014.11.009

Pérez, A. F., Boy, C., Morriconi, E., & Calvo, J. (2010). Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology, 33(3), 271-280. https://doi.org/10.1007/s00300-009-0702-6

Pérez, A. F., Fraysse, C., Boy, C. C., Epherra, L., & Javier, C. (2017). Reproductive biology and energetics of the brooding sea star Anasterias antarctica (Echinodermata: Asteroidea) in the Beagle Channel, Tierra del Fuego, Argentina. Revista de Biología Tropical, 65(1-1), 221-232. https://doi.org/10.15517/rbt.v65i1-1.31690

Pérez, A. F., Morriconi, E., Boy, C., & Calvo, J. (2008). Seasonal changes in energy allocation to somatic and reproductive body components of the common cold temperature sea urchin Loxechinus albus in a Sub-Antarctic environment. Polar Biology, 31(4), 443-449. https://doi.org/10.1007/s00300-007-0370-3

R Core Team. (2024). R: a language and environment for statistical computing [Software]. R Foundation for Statistical Computing. Available: https://www.R-project.org/

Raymond, J., Himmelman, J., & Guderley, H. (2004). Sex differences in biochemical composition, energy content and allocation to reproductive effort in the brooding sea star Leptasterias polaris. Marine Ecology Progress Series, 283, 179-190. https://doi.org/10.3354/meps283179

Raymond, J.-F., Himmelman, J. H., & Guderley, H. E. (2007). Biochemical content, energy composition and reproductive effort in the broadcasting sea star Asterias vulgaris over the spawning period. Journal of Experimental Marine Biology and Ecology, 341(1), 32-44. https://doi.org/10.1016/j.jembe.2006.10.030

Rivadeneira, P. R., Brogger, M. I., & Penchaszadeh, P. E. (2017). Aboral brooding in the deep water sea star Ctenodiscus australis Lütken, 1871 (Asteroidea) from the Southwestern Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 123, 105-109. https://doi.org/10.1016/j.dsr.2017.03.011

Romanelli Michel, M. V. (2014). Revisión taxonómica de las estrellas de mar de la familia Asteriidae Gray, 1840 (Asteroidea: Forcipulatida) del Atlántico Sudoccidental [PhD Thesis]. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires.

Shilling, F. M., & Bosch, I. (1994). Pre-feeding embryos of Antarctic and temperate echinoderms use dissolved organic material for growth and metabolic needs. Marine Ecology Progress Series, 109, 173-182.

Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A. A. (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research, 79, 1-15. https://doi.org/10.1016/j.marenvres.2012.04.003

Steele, D. H., & Steele, V. J. (1975). Egg size and duration of embryonic development in Crustacea. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 60(5), 711-715. https://doi.org/10.1002/iroh.19750600609

Thatje, S., Steventon, E., & Heilmayer, O. (2018). Energetic changes throughout early ontogeny of the brooding Antarctic sea star Rhopiella hirsuta (Koehler, 1920). Polar Biology, 41(6), 1297-1306. https://doi.org/10.1007/s00300-018-2285-6

Valentine, J. W., & Jablonski, D. (1983). Larval adaptations and patterns of brachiopod diversity in space and time. Evolution, 37(5), 1052-1061. JSTOR. https://doi.org/10.2307/2408418

Vance, R. R. (1973). On reproductive strategies in marine benthic invertebrates. The American Naturalist, 107(955), 339-352.

Descargas

Publicado

2025-07-23