Development patterns and oxidative metabolismof antarctic sea stars
Palabras clave:
Sea star, Antioxidants, ROS, Antarctica, Brooding, Free living larvaResumen
Sea stars exhibit different development patterns that comprise indirect and direct development, including pelagic or benthic larvae, and planktotrophic or lecithotrophic nutrition. The purpose of our research was to study the general parameters of oxidative metabolism during female gonadal maturation in Antarctic sea stars with different development patterns. Summer sampling was performed in 2012 in Antarctica. Every asteroid was taxonomically identified, and its development pattern was established. Sex and the reproductive stage were determined through histological analyses. The general parameters of the oxidative metabolism were determined in mature ovaries by measuring reactive oxygen species (ROS) and total antioxidant capacity (TAC). The development patterns with internal or oral brooding presented a lower production of ROS than those with a broadcaster strategy. The free-living planktotrophic larvae pattern presented lower TAC values than both types of brooding patterns. The development patterns of free-living lecithotrophic larvae and facultative lecithotrophic larvae presented intermediate values of TAC but did not show significant differences. We concluded that species that offspring rapidly acquire the ability to feed during development (planktotrophic larvae) exhibit lower TAC and higher levels of ROS than the species that do not feed during their development, which will receive greater maternal supply of antioxidants, resulting in reduced ROS levels. The development patterns with brooding ensure better quality oocytes and higher fitness in offspring than those unprotected.
Descargas
Referencias
REFERENCES
Abele, D., Burlando, B., Viarengo, A., & Pörtner, H. O. 1998. Exposure to elevated temper-atures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Ant-arctic intertidal limpet Nacella concinna. Comparative Biochemistry and Physiology Part B 120, 425-435.
Abele-Oeschger, D., Oeschger, R., & Theede, H. 1994. Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporarily increased hydrogen peroxide levels in intertidal sandflats. Marine Ecology Progress Series 106, 101-110.
Alonso-Alvarez, C., Bertrand, S., Devevey, G., Prost, J., Faivre, B., & Sorci, G. 2004. In-creased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Let-ters 7, 363-368.
Amado, L. L., Garcia, M. L., Ramos, P. B., Freitas, R. F., Zafalon, B., Ferreira, J. L., Yunes J. S., & Monserrat, J. M. 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystin toxicity. Science of the Total Environment 407, 2115-2123.
Bernasconi, I. 1962. Asteroideos Argentinos III. Familia Odontasteridae. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 9, 1-25.
Bernasconi, I. 1970. Equinodermos antárticos. II. Asteroideos. 3. Asteroideos de la extre-midad norte de la Península Antártica. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 9, 211-281.
Bosch, I., & Slattery, M. 1999. Costs of extended brood protection in the Antarctic sea star, Neosmilaster georgianus (Echinodermata: Asteroidea). Marine Biology 134, 449-459.
Chia, F. S., & Walker, C. W. 1991. Echinodermata: Asteroidea. In A. C.
Giese, J. S. Pearse, V.B. Pearse, (Ed.), Reproduction of Marine Invertebrates, Echinoderms and Lo-phophorates (Vol. 6, pp. 301-353). Pacific Grove: Boxwood Press.
Chia, F.S. (1974). Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia Jugoslavica 10, 121-130.
Clark, A. M., & Downey, M. E. 1990. Starfishes of the Atlantic. England: Chapman & Hall.
De Broyer, C., Clarke, A., Koubbi, P., Pakhomov, E., Scott, F., Vanden Berghe, E., & Dan-is, B. 2024. Register of Antarctic Marine Species (RAMS). http://www.marinespecies.org/rams.
Doughty, P., & Shine, R. 1997. Detecting life history trade-offs: Measuring energy stores in “capital” breeders reveals costs of reproduction. Oecologia 110, 508-513.
Fisher, W. K. 1940. Asteroidea. Discover Report 20, 69-306.
Fraysse, C. P., Boy, C. C., Becker, J., Calcagno, J., & Pérez, A. 2020a. Brooding in the Southern Ocean: The Case of the Pterasterid Sea Star Diplopteraster verrucosus (Sladen, 1882). Biological bulletin 239, 1-12.
Fraysse, C., Pérez, A. F., Calcagno, J., & Boy, C. C. 2020b. Energetics and development mode of the Asteroidea (Echinodermata) from the Southwestern Atlantic Ocean including Burdwood Bank/MPA Namuncurá. Polar Biology 43, 175-186.
Fraysse, C.P., Boy, C.C., & Pérez, A.F. 2021. Reproductive traits of the intertidal sea star Anasterias antarctica (Echinodermata: Asteroidea) from the Beagle Channel, Argentina. Marine Biology 168, 1-19.
Fraysse, C. 2021. Distribución, recursos energéticos y metabolismo oxidativo de Asteroi-deos subantárticos con diferentes estrategias reproductivas. Estudio particular de la incu-bación: Argentina: UBA, Facultad de Ciencias Exactas y Naturales. Tesis Doctoral en Ciencias Biológicas.
Fraysse, C., Boy, C. C., Veyñ, M., Farias, A., & Pérez, A. F. 2024. Noble hosts: effects of internal parasites on the physiology of an intertidal brooding Sea-star. Revista de Biología Tropical 72.
Fridovich, I. 1974. Superoxide and evolution. Horizont Biochemistry Biophysics 1, 1-37.
Geracitano, L. A., Monserrat, J. M., & Bianchini, A. 2004. Oxidative stress in Laeonereis acuta (Polychaeta Nereididae): environmental and seasonal effects. Marine Environmental Research 58, 625-630.
Gillespie, J. M., & McClintock, J. B. 2007. Brooding in echinoderms: how can modern ex-perimental techniques add to our historical perspective?. Journal of Experimental Marine Biology and Ecology 342, 191–201.
GBIF 2022 Occurrence Download. https://www.gbif.org/occurrence/Global Biodiversity Information Facility 2022.
Hermes Lima, M. 2004. Oxygen in Biology and Biochemistry: Role of free radical. In K. B. Storey (Ed), Funcional Metabolism: Regulation and Adaptation (pp. 319-368). Hoboken: John Wiley & Sons, Inc..
Hyman, L. H. 1955. The invertebrates: echinodermata, the coelomate bilateria (Vol. 4). New York: McGraw-Hill.
Janies D. A. 1995. Reconstructing the evolution of morphogenesis and dispersal among velatid asteroids: United Stated: UF. PhD Thesis.
Keller, M., Sommer, A., Pörtner, H. O., & Abele, D. 2004. Seasonality of energetic func-tioning and reactive oxygen species production by mitochondria of the lugworm Arenicola marina, exposed to acute temperature changes. Journal of Experimental Biology 207, 2529-2538.
Koehler, R. 1912. Échinodermes (astéries, ophiures et échinides). Deuxième Expédition Antarctique Française (1908-1910). Paris: Masson.
Chia, F. S., & Walker, C. W. 1991. Echinodermata: Asteroidea. In A. C. Giese, J. S. Pearse, V.B. Pearse, (Ed.), Reproduction of Marine Invertebrates, Echinoderms and Lo-phophorates (Vol. 6, pp. 301-353). Pacific Grove: Boxwood Press.
Livingstone, D. R., Garcia Martinez, P., Michel, X., Narbonne, J. F., O'Hara, S., Ribera, D., & Winston, G. W. 1990. Oxyradical production as a pollution mediated mechanism of tox-icity in the common mussel, Mytilus edulis L., and other molluscs. Functional Ecology 4 (3), 415-424.
Mah, C. L. 2020. World Asteroidea Database. [Online]. http://www.marinespecies.org/asteroidea.
Mah, C., Neill, K., Eléaume M., & Foltz, D. 2014. New species and global revision of Hip-pasteria (Hippasterinae: Goniasteridae; Asteroidea; Echinodermata): Hippasteria revision. Zoological Journal of the Linnean Society 171, 422-456.
Malanga, G., Estevez, M., Calvo, J., Abele, D., & Puntarulo, S. 2007. The effect of sea-sonality on oxidative metabolism in Nacella (Patinigera) magellanica. Comparative Bio-chemistry and Physiology Part B 146, 551-558.
McClary, D. J., & Mladenov, P. V. 1990. Brooding biology of the sea star Pteraster militaris (O.F. Müller): energetic and histological evidence for nutrient translocation to brooded juve-niles. Journal of Experimental Marine Biology and Ecology 142, 183-199.
McEdward, L. R., & Miner, B. G. 2001. Larval and life-cycle patterns in echinoderms. Ca-nadian Journal of Zoology 79, 1125-1170.
Mileikovsky, S. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Marine Biology 10, 193-213.
Pearse, J. S., McClintock, J. B., & Bosch, I. 1991. Reproduction of Antarctic benthic ma-rine Invertebrates: tempos, modes, and timing. American Zoology 31, 65-80.
Pearse, J.S., & Bosch, I. 1994. Brooding in the Antarctic: Östergren had it nearly right. In B. David (Ed.), Echinoderms Through Time: Proceedings of the Eighth International Echino-derm Conference (pp. 111-120). Rotterdam: Balkema.
Pérez, A. F., Morriconi, E., Boy, C., & Calvo, J. 2008. Energetic variation of the sea urchin Loxechinus albus at the southernmost limit of their distribution range (Beagle Channel, Tier-ra del Fuego). Polar Biology 31, 443-449.
Pérez, A. F. 2009. Reproducción, energética y metabolismo oxidativo del erizo comestible Loxechinus albus en el Canal Beagle, extremo sur de su distribución. Argentina: UBA, Fa-cultad de Ciencias Exactas y Naturales. Tesis Doctoral en Ciencias Biológicas.
Pérez, A. F., Boy, C., Morriconi, E., & Calvo, J. 2010. Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology 33, 271-280.
Pérez, A. F., Malanga, G., & Puntarulo, S. 2011. Reproductive condition associate to changes in the liposoluble antioxidant capacity and the damage to lipids in the sea urchins Loxechinus albus (Echinodermata: Echinoidea). Revista Ciencias Marinas y Costeras 3, 183-194.
Pérez, A. F., Boy, C. C., Calcagno, J. A., & Malanga, G. 2015. Reproduction and oxidative metabolism in the brooding sea star Anasterias antarctica (Lütken, 1957). Journal of Exper-imental Marine Biology and Ecology 463, 150-157.
Pérez, A., Fraysse, C., & Ojeda, M. 2024. Distribución y patrones de desarrollo de asteroi-deos antárticos. Revista de Biología tropical, 72.
Plank, L. R., Lawrence, J. M., Lawrence, A. L., & Montoya Olvera, R. 2002. The effect of dietary carotenoids on gonad production and carotenoid profiles in the sea urchin Lytechi-nus variegatus. Journal of the World Aquaculture Society 33(2), 127-137.
Power, A., & Sheehan, D. 1996. Seasonal variations in the antioxidant defense systems of gill and digestive gland of the blue mussel, Mytilus edulis. Comparative Biochemistry and Physiology Part C 114, 99-103.
Sladen, W. P. 1889. Report on the Asteroidea collected by HMS Challenger. Zoology 30, 893.
Stearns, S. C. 1982. The role of development in the evolution of life histories. In J.T. Bon-ner (Ed), Evolution and Development (pp. 237-258). Berlin: Springer.
Tablado A. 1982. Asteroideos Argentinos Familia Poraniidae. Comunicaciones del Museo Argentino de Ciencias Naturales Bernardino Rivadavia. Hidrobiología 2, 87-106.
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biolog-ical reviews of the Cambridge Philosophical Society 25, 1-45.
Verril, A. E. 1914. Monograph of the Shallow-water Starfishes of the North Pacific Coast from the Arctic Ocean to California. Science 40 (1032), 523-525.
Wilhelm-Filho, D., Tribess, T., Gáspari, C., Cláudio, F.D., Torres, M.A., & Magalhães, A.R.M. 2001. Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna). Aquaculture 203, 149-158.
Winston, G.W., & Di Giulio, R.T. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology 19, 137-161.
Descargas
Publicado
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales), ya que puede conducir a a una mayor y más rápida difusión del trabajo publicado.