Estimación de la longitud total y el peso de Helcogrammoides cunninghami (Perciformes, Tripterygiidae) de Playa Santa Isabel (Chubut, Argentina) a partir de otolitos, huesos craneales y de la cintura escapular

Autores/as

  • Ximena Navoa Instituto de Investigación de Hidrobiología, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Sede Trelew
  • Cinthia Ibarra Centro para el Estudio de Sistemas Marinos - CONICET
  • Kevin Jacobi CENPAT - CONICET FCNyCS-UNPSJB
  • Alessandra Pasti CENPAT -CONICET
  • Nelson Bovcon IIH-FCNyCS-UNPSJB FCNyCS-UNPSJB IIDEPyS, CONICET-UNPSJB

Palabras clave:

relaciones morfométricas, depredadores piscívoros, reconstrucción de la dieta

Resumen

En el presente trabajo, se generaron regresiones para estimar el peso húmedo a partir de la longitud total, y el peso húmedo y la longitud total a partir de medidas de otolitos, huesos craneales y de la cintura escapular
de Helcogrammoides cunninghami. No se encontraron diferencias en la relación peso húmedo-longitud total entre machos y hembras, observándose un crecimiento isométrico entre el peso húmedo y la longitud total. Las medidas de los huesos explicaron mejor que los otolitos los cambios en el peso y la longitud total de los ejemplares de H. cunninghami. Las ecuaciones obtenidas son una herramienta para la investigación en ecología trófica a fin de evaluar el rol de H. cunninghami en la dieta de depredadores piscívoros.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ahlbeck I., S. Hansson & O. Hjerne. 2012. Evaluating fish diet analysis methods by individual-based modelling. Canadian Journal of Fisheries and Aquatic Sciences, 69(7):1184–1201. https://doi.org/10.1139/f2012-051

Battaglia P., F. Andaloro, V. Esposito, A Granata, L. Guglielmo, R. Guglielmo & G. Zagami. 2016. Diet and trophic ecology of the lanternfish Electrona risso (Cocco, 1829) in the Strait of Messina (central Mediterranean Sea) and potential resource utilization from the Deep Scattering Layer (DSL). Journal of Marine Systems, 159: 100-108. https://doi.org/10.1016/j.jmarsys.2016.03.011

Beyer, K., R. Miranda, G. H. Copp & R. E. Gozlan. 2006. Biometric data and bone identification of topmouth gudgeon Pseudorasbora parva and sunbleak Leucaspius delineatus. Folia Zoologica, 55(3): 287-292.

Buckland A., R. Baker, N. Loneragan & M. Sheaves. 2017. Standardising fish stomach content analysis: the importance of prey condition. Fisheries Research, 196:126-140. https://doi.org/10.1016/j.fishres.2017.08.003

Bulgarella, M., L. Cella Pizarro, F. Quintana, A. Sapoznikow, A. Gosztonyi & L. Kuba. 2008. Diet of Imperial Cormorants (Phalacrocoraz atriceps) and Rock Shags (P. magellanicus) Breeding Sympatrically in Patagonia, Argentina. Ornitología Neotropical 19: 553-563.

Carss, D. & D. Elston. 1996. Errors associated with otter Lutra lutra faecal analysis. II. Estimating prey size distribution from bones recovered in spraints. Journal of Zoology, 238: 319-332.

https://doi.org/10.1111/j.1469-7998.1996.tb05397.x

Casteel R.W. 1976. Fish remains in archaeology and paleo-environmental studies. Academic Press, London. 180 pp.

Copp, G.H. & V. Kováč. 2003. Biometric relationships between body size and bone lengths in fish prey of the Eurasian otter Lutra lutra: chub Leuciscus cephalus and perch Perca fluviatilis. Folia Zoologica, 52: 109-112.

da Silveira, E.L., N. Semmar, J.E. Cartes, V.M. Tuset, A. Lombarte, E.L.C. Ballester & A.M. Vaz-dos-Santos. 2020. Methods for trophic ecology assessment in fishes: a critical review of stomach analyses. Reviews in Fisheries Science & Aquaculture, 28(1): 71-106. https://doi.org/10.1080/23308249.2019.1678013

Fernández, S.J., C. Ibarra, X. Navoa & J.E. Ciancio. 2024. Using head, pectoral girdle bones and otoliths to estimate length and weight of Argentine anchovy (Engraulis anchoita), a key species in Patagonian marine ecosystem. Marine & Fishery Sciences (MAFIS), 37(1), 241-252.

Froese, R. 2006. Cube law, condition factor and weight–length relationships: history, meta‐analysis and recommendations. Journal of Applied Ichthyology, 22: 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Gosztonyi A.E. 1984. La alimentación del pingüino Magallánico (Spheniscus magellanicus) en las adyacencias de Punta Tombo, Chubut, Argentina. Contribución Centro Nacional Patagónico 95:1-19.

Gosztonyi, A.E. & L. Kuba. 1996. Atlas de huesos craneales y de la cintura escapular de peces costeros patagónicos. Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica, 4: 1-29.

Gosztonyi, A.E. & L. Kuba. 1998. Fishes in the diet of the Imperial Cormorant Phalacrocorax atriceps at Punta Lobería, Chubut, Argentina. Marine Ornithology 26: 59-61.

Granadeiro J.P. & M.A. Silva. 2000. The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium 24(4): 383-393.

Hájková, P., K. Roche & L. Kocian. 2003. On the use of diagnostic bones of brown trout, Salmo trutta m. fario, grayling, Thymallus thymallus and Carpathian sculpin, Cottus poecilopus in Eurasian otter, Lutra lutra diet analysis. Folia Zoologica, 52: 389-398.

Hansel, H.C., S.D. Duke, P.T. Lofy & G.A. Gray. 1988. Use of diagnostic bones to identify and estimate original lengths of ingested prey fishes. Transactions of the American Fisheries Society, 117: 55-62. https://doi.org/10.1577/1548-8659(1988)117<0055:UODBTI>2.3.CO;2

Hollister, G. 1934. Clearing and dyeing fish for study. Zoológica 12: 89-101.

Ibarra, C., C. Marinao, N. Suárez, y P. Yorio. 2018. Differences between colonies and chick-rearing stages in Imperial Cormorant (Phalacrocorax atriceps) diet composition: implications for trophic studies and monitoring. The Wilson Journal of Ornithology 130: 224-234. DOI:

https://doi.org/10.1676/16-184.1

Ibarra, C., C. Marinao, S. Suárez, T. Kasinsky y P. Yorio. 2022. Patterns of sexual segregation in the use of trophic resources in breeding Imperial Cormorants. Marine Biology. 169: 154. https://doi.org/10.1007/s00227-022-04143-7

Irigoyen, A. 2010. Peces de Arrecife Argentinos. Editores Irigoyen A.J. y Galván D.E. Proyecto Arrecifes. 88 pp.

Jansen O., M. Leopold, E. Meesters & C. Smeenk. 2010. Are white-beaked dolphins Lagenorhynchus albirostris food specialists? Their diet in the southern North Sea. Journal of the Marine Biological Association of the United Kingdom 90(8): 1501-1508.

https://doi.org/10.1017/S0025315410001190

Jobling M. & A. Breiby. 1986. The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia 71(3-4): 265-274. https://doi.org/10.1080/00364827.1986.10419696

Johnstone I.G., M.P. Harris, S. Wanless & J.A. Graves. 1990. The usefulness of pellets for assessing the diet of adult Shags Phalacrocorax aristotelis. Bird Study 37: 5-11. https://doi.org/10.1080/00063659009477030

Marques F. P., L.G. Cardoso, M. Haimovici & L. Bugoni. 2018. Trophic ecology of Magellanic penguins (Spheniscus magellanicus) during the non-breeding period. Estuarine, Coastal and Shelf Science 210: 109-122. https://doi.org/10.1016/j.ecss.2018.06.001

Martínez-Polanco M.F., P. Bearez, M. Jimenez Acosta & R.G. Cooke. 2022. Allometry of Mexican hogfish (Bodianus diplotaenia) for predicting the body length of individuals from two pre‐Columbian sites in the Pearl Island archipelago (Panama). International Journal of Osteoarchaeology, 32: 669-681. https://doi.org/10.1002/oa.3094

Moreno C.A., W.E. Duarte & J.H. Zamorano. 1979. Variación latitudinal del número de especies de peces en el sublitoral rocoso: una explicación ecológica. Archivos de Biología y Medicina Experimentales, 12: 169-178.

Moreno, C.A. & J.H. Zamorano. 1980. Selectividad del alimento en dos peces bentófagos (Mugiloides chilensis y Calliclinus geniguttatus). Boletim do Instituto Oceanográfico, 29: 245-249. https://doi.org/10.1590/S0373-55241980000200051

North A.W., M. S. Burchett, C.J. Gilbert & M.G. White. 1984. Identification of fish from the Southern Ocean by means of otoliths. Bulletin of the British Antarctic Survey 62: 83-94.

Perez-Comesaña J.E., P. Clavin, K. Arias & C. Riestra. 2014. Total length estimation of the Brazilian flathead Percophis brasiliensis, using morphometric relationships of skull, pectoral girdle bones, otoliths and specific body measures, in Argentine waters. Journal of Applied Ichthyology 30(2): 377-380. https://doi.org/10.1111/jai.12244

Pérez-Matus, A., S.A. Carrasco & A. Ospina-Alvarez. 2014. Length-weight relationships for 25 kelp forest-associated fishes of northern and central Chile. Revista de Biología Marina y Oceanografía, 49. DOI 10.4067/S0718-19572014000100016

Pierce G.J. & P.R. Boyle. 1991. A review of methods for diet analysis in piscivorous marine mammals. Oceanography and Marine Biology Annual Review, 29: 409-486.

Pierce G.J., P.R. Boyle, J. Watt & M. Grisley. 1993. Recent advances in diet analysis of marine mammals. Symposia of the Zoological Society of London, 66: 214-261.

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

Raczynski, M. & Z. Szuba. 1997. Description of the inferior pharyngeal bones, ossa pharynges inferiora, in the common bream Abramis brama (L.) from the Szczecin lagoon with special regard to bilateral asymmetry. Acta Ichthyologica et Piscatoria, 27: 59-67.

Recchia C.A. & A.J. Read. 1989. Stomach contents of harbour porpoises, Phocoena phocoena, from the Bay of Fundy. Canadian Journal of Zoology, 67(9): 2140-2146. https://doi.org/10.1139/z89-304

Reyes, P. & M. Hüne. 2012. Peces del Sur de Chile. Editorial OCHO LIBROS. 502 pp.

Riestra C., J.E. Perez-Comesaña, K.A. Arias, L.L. Tamini & G.E. Chiaramonte. 2020. Back-calculation of total length of Argentine seabass Acanthistius patachonicus using morphometric relationships of bones and measurements of the body. Marine and Fishery Sciences, 33: 69-75. https://doi.org/10.47193/mafis.3312020061804

Ríos, M.F., A.J. Irigoyen, D.E. Galván & S.M. Delpiani. 2017. Length–weight relationships for three small reef‐fishes from the Argentine coast: Helcogrammoides cunninghami (Smitt, 1898), Ribeiroclinus eigenmanni (Jordan, 1888), and Hypleurochilus fissicornis (Quoy and Gaimard, 1824). Journal of Applied Ichthyology, 33:633-634. https://doi.org/10.1111/jai.13327

Roul, S.K., A.R. Akhil, T.B. Retheesh, K.M. Rajesh, U. Ganga, E.M. Abdussamad & P. Rohit. 2020. Length-weight relationships of fifty fish species from Indian waters. Thalassas: An International Journal of Marine Sciences, 36: 309-314. https://doi.org/10.1007/s41208-020-00223-x

Sapoznikow, A., F. Quintana & L. Kuba. 2009. Low seasonal variation in the diet of Rock Shags (Phalacrocorax magellanicus) at a Patagonian colony in Argentina. Emu- Austral Ornithology, 109: 35-39. https://doi.org/10.1071/MU07061

Tarkan, A.S., Ç. Gürsoy Gaygusuz, Ö. Gaygusuz & H. Acipinar. 2007. Use of bone and otolith measures for size-estimation of fish in predator-prey studies. Folia Zoologica, 56: 328-336.

Tirasin M.E. & T. Jørgensen. 1999. An evaluation of the precision of diet description. Marine Ecology Progress Series, 182:243–252. DOI:10.3354/meps182243.

Vignon, M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology, 420: 26-32. https://doi.org/10.1016/j.jembe.2012.03.021

Williams, J.T. & G. Victor. 2001. Springer review of the South American-Antarctic Triplefin Fish Genus Helcogrammoides (Perciformes: Tripterygiidae). Revista de Biología Tropical, 49: 117-123. https://revistas.ucr.ac.cr/index.php/rbt/article/view/26236

Williams J. 2014. Helcogrammoides cunninghami. The IUCN Red List of Threatened Species 2014:e.T178996A1557179. http://dx.doi.org/10.2305/IUCN.UK.20143.RLTS.T178996A1557179.en

Xue Y., Y. Ren, B. Xu, C. Mei, X. Chen & X. Zan. 2011. Length-weight relationships of fish species caught by bottom trawl in Jiaozhou Bay, China. Journal of Applied Ichthyology, 27(3): 949-954. https://doi.org/10.1111/j.1439-0426.2010.01607.x

Descargas

Archivos adicionales

Publicado

2025-03-26

Número

Sección

Artículos